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ABSTRACT

An Intelligent Control System for Reusable Rocket Engines under development at NASA Lewis

Research Center requires a graphical user interface to allow observation of the closed-loop system

in operation. The simulation testbed consists of a real-time engine simulation computer, a

controls computer, and several auxiliary computers for diagnostics and coordination. The system

is set up so that the simulation computer could be replaced by the real engine and the change

would be transparent to the control system. Because of the hard real-time requirement of the

control computer, putting a graphical user interface on it was not an option. Thus, a separate

computer used stricdy for the graphical user interface was warranted. An object-oriented LISP-

based graphical user interface has been developed on a Texas Instruments Explorer II+ to indicate

the condition of the engine to the observer through plots, animation, interactive graphics, and

text.

NOMENCLATURE

ENGINE COMPONENTS

CCV

FPOV

HPFTP

HPOTP

LPFrP

MFV

MOV

OPFV

OPOV

SSME

Chamber Coolant Valve

Fuel Preburner Oxidizer Valve

High Pressure Fuel Turbopump

High Pressure Oxidizer Turbopump

Low Pressure Fuel Turbopump

Main Fuel Valve

Main Oxidizer Valve

Oxidizer Prebumer Fuel Valve

Oxidizer Prebumer Oxidizer Valve

Space Shuttle Main Engine



ENGINE VARIABLF_

DWft2d

DWopl
MR

P5
PC
rfdl

Prod

Pfad

Pft2i

Pso

Po.d

Poad

P,,d
Qfal
Sfl

So2

%
T dl
Tfo.d

%
Tosd

Tot2d

Nominal Stress

Tip Clearance

Damage

Damage Rate

High Pressure Fuel Turbine Fuel How

Low Pressure Oxidizer Pump Oxidizer How
Mixture Ratio

Main Combustion Chamber Coolant Pressure

Chamber Pressure

Low Pressure Fuel Pump Outlet Pressure
Fuel Prebumer Pressure

Fuel Supply Pressure

Low Pressure Fuel Turbine Discharge Pressure

High Pressure Fuel Turbine Outlet Pressure

High Pressure Fuel Turbine Inlet Pressure

Helium Purge Pressure
Oxidizer Prebumer Pressure

Oxidizer Seal Drain Pressure

High Pressure Oxidizer Turbine Outlet Pressure

Primary Seal Drain Pressure

Secondary Seal Drain Pressure
Fuel Flow

Low Pressure Fuel Turbopump Speed

High Pressure Fuel Turbopump Speed

High Pressure Oxidizer Turbopump Speed

Main Combustion Chamber Coolant Temperature

Low Pressure Fuel Pump Outlet Temperature

High Pressure Fuel Turbine Outlet Temperature

Oxidizer Prebumer Temperature

Oxidizer Seal Drain Temperature

High Pressure Oxidizer Turbine Outlet Temperature

Primary Seal Drain Temperature

INTRODUCTION

The Reusable Rocket Engine Intelligent Control System (ICS) under development is genetic

technology which is being demonstrated on a model of the Space Shuttle Main Engine (SSME)

[1], an example of a reusable rocket engine. The ICS testbed [2] consists of five interconnected

computers as shown in figure 1. A real-time AD100 simulation computer runs a model of the

engine [3] and associated valves and sensors, as well as models of the engine's behavior with

failed components [4]. The Control Interface and Monitoring (CIM) Unit [5] is a control

computer built in-house utilizing Intel 80486 technology. Several applications run on it including

a reconfigurable controller and an engine level coordinator, both described in [6], and a model-

based fault detection algorithm [7]. A VAX Station 3500 computer runs G2 TM [8], a real-time
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expert systemshell developedfor process monitoring and used here for diagnostics and rule-

based fault detection [9]. A personal computer-mounted neural network processor board

executes a sensor failure detection, isolation and accommodation scheme [10]. Finally, a Texas

Instruments Explorer II+ runs the object-oriented graphical user interface (GUI).

All pertinent information and results such as sensed engine variable values and actuator,

component, and sensor failures identified using the other computers are passed to the CIM Unit

where they are used to compute the next control signal. The hard real-time constraint on the

control computer makes it an unsuitable location for a time-consuming interactive graphical user

interface. Therefore, an alternate platform was needed on which to run the GUI and a Texas

Instruments Explorer II+ was selected. The Texas Instruments Explorer II+ LISP Machine has

a large (16"), high resolution (1024 pixels × 754 pixels) color screen (up to 256 colors displayed

simultaneously), an object-oriented window-based graphical system, a three-button mouse, and

a sophisticated development environment including many graphics primitives, interactive

debugging, a powerful screen editor, incremental compilation, and a LISP interpreter for
interactive function evaluation. These features combined with the lack of a hard real-time

requirement on the GUI make the Explorer an excellent platform for this application [11]. The

Explorer system is shown in figure 2. The CIM Unit, which contains all known information

relevant to the condition of the engine, is responsible for providing a snapshot of the current

system status to the GUI via an ethemet connection so it can be displayed.

AN OBJECT-ORIENTED GRAPHICAL USER INTERFACE

An object-oriented system is one consisting of entities possessing certain data and operations

[12]. These entities or objects interact in predefmed ways to give the overall system the

desired qualities. By object-oriented graphics, one means a set of graphical entities which have

certain properties. These properties might include position, color, and size, for instance. Items

traditionally tholvght of as graphical objects----polygons, sprites, blinkers--are only a fraction of

the total. Other graphical objects used in this GUI include windows, frames, and the mouse

cursor. Specific instances of a class of objects are created from a template called aflavor which

is a generic object of a particular type with certain default properties. The new object will

antomatically inherit those properties unless they are explicitly set to something else. New

flavors can be built by combining several existing types and the new ones will contain the

properties of their parents. Objects communicate by sending messages to each other which, when

received, produce a certain action. For example, a sprite is a graphical object which can move

along a desired path on the screen automatically, i.e., the tasks of saving the background, drawing

the sprite, erasing the sprite, redrawing the background, saving the background in the new

location, redrawing the sprite in its new location, and so on, are done by the processor without
instruction from the GUI. These actions can be initiated and altered by sending a message to the

sprite, which is accomplished by executing a special line of code. The sprite object itself

contains the program to update the screen and has it simply by virtue of being a sprite--it is an

inherited property of all sprites.
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COMMUNICATION WITH THE CIM UNIT

Twenty times a second, the CIM Unit sends a packet of data to the Explorer via an ethernet

connection using the TCP/IP protocol. The Explorer has an area of memory called an/nput

buffer which holds the data packets in a queue until they can be read sequentially by the GUI.

The CIM Unit includes in each data packet a time stamp, 44 variable values to be plotted, and

an integer indicating the failure status of each piece of hardware. The time stamp is used as the

independent value in the coordinate axes against which the 44 variable values are plotted on the

GUI screens described below. Some of the 44 variables are plotted on more than one screen.

The binary integer containing the failure flags indicates to the GUI which faults have been

identified. There are 19 identifiable failures, each indicated by a single bit, between 2 0 and 2 is

(see Appendix). The integer containing the flags is sent in each data packet, even if it is

unchanged, and the GUI compares it to the previous one it received. Any change indicates a new

failure was detected. This makes the system robust since a packet on the network might be

missed due to the input buffer overflowing and, if the flag were sent only once upon detection,

it might be lost.

THE SCREENS

There are eight screens which make up the ICS GUI. Each screen consists of three windows

built into a structure called aflame. Since there exists a one-to-one relationship between screens

and frames in the ICS GUI, the words will be used interchangeably. The frames are arranged

in a hierarchical, tree-like structure. The more general represent the base of the tree while the

more specific represent its branches. Each frame contains at least one icon, a graphical object

which symbolizes an action to be performed. In this case, clicking on the icon with the mouse

exposes the frame corresponding to that icon. The hierarchy of screens and the paths of

movement between them is shown in figure 3. The screens are described below.

The Mouse-Sensitive Graphics Window

The upper window on each screen (see figure 4, for example) is mouse-sensitive. This means

that there are objects in the window which become highlighted when the mouse cursor is on them

and that some action is performed when they are clicked on. In the ICS GUI, clicking on the

selectable icon will bring up the screen which corresponds to it. When the mouse cursor is

placed over a selectable object, a box appears around the object. Additionally, a text string

indicating which frame will be exposed ff the object is clicked on appears in the extreme lower

left of the screen. Both the box and the text string disappear when the cursor is moved off the

object. The mouse-sensitive graphics window is the one which contains the picture of the system

or component so it is clear which icons might be selectable. To make it even clearer, whenever

a failure occurs, the picture of the malfunctioning component begins blinking. The integer failure

flag sent by the CIM Unit as part of the data packet initiates this blinking in the mouse-sensitive

graphics windows. With this type of screen it is natural to select particular objects creating a

smooth flow through the GUI to observe the engine's operation interactively.

The Plotting Window

Another graphics window is located at the lower right of each screen (see figure 4, for example).

These plotting windows are not mouse-sensitive. They are animated to display the values of the
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enginevariablesin strip-chart form updated in simulation time. Each of these windows contains

from five to nine sets of coordinate axes displaying preselected variables appropriate to the

picture in the mouse-sensitive graphics window on the same screen. Each axis can display up

to 361 data points. When the plot comes to the fight edge of the time-axis, it shifts left half way

(the point at the right edge moves to the middle of the time-axis) and continues plotting to the

right. Time is displayed across the top of the window and is updated with each leftward shift.

Variable name, units, and range are included by each set of coordinate axes.

The plotting window assumes a user-specified number of 20 samples per second will be

transferred from the CIM Unit and sets itself up so that the time-axis corresponds to 361 of those

time steps (the time-axis is 361 pixels long). Ideally, the time stamps associated with the data

sets correspond one-to-one to the pixels of the time-axis. If the GUI does not receive variable

values for each expected time step, either because samples are sent at a slower rate or because

some data packets get lost, the GUI will plot the points at their appropriate location based on the

time stamp and linearly interpolate between the previous and current data point in the plotting

window so spaces are not left blank. If the GUI receives samples at a faster rate than

anticipated, implying that more than 361 data sets are received in the 18 seconds allotted, the

array which saves the variable values will fill up prematurely causing a fatal error.

The Output Window

The output window is a LISP Listener, an interactive text window located in the lower left comer

of the screen (see figure 4, for instance). System bulletins such as announcements of failures are

broadcast to the output windows on all of the screens for informational purposes. The integer

failure flag sent by the CIM Unit as part of the data packet initiates the broadcast of these

descriptive bulletins. The output window accepts keyboard input, evaluates it and returns a value.

Thus it can be used to examine or change variables within the GUI.

FAILURE DISPLAY

For each failure, a set of operations is performed. A bulletin is sent to the output window of

each frame so there is some text visible to the user describing the fault. Messages are sent to

all appropriate blinkers, telling them to flash. If a failure message appears in the output window

of the screen being displayed but nothing is flashing in the mouse-sensitive graphics window, the

user can return to the top level screen to see the blinker. From there, the user can proceed down

through the tree of frames to the screen displaying the failure.

GUI SCREENS

The eight frames which make up the GUI and their functions are described below.

SSME Screen

The top level screen (figure 4) shows all major engine components, valves, and sensors. The

oxidizer (oxygen) flow paths are shown in green and the fuel (hydrogen) flow paths are shown

in red. Every failure which the ICS is able to account for can be indicated from this screen with

a flasher in the upper window as well as the bulletin in the output window. Clicking on any of

the valve icons exposes the Valve screen while clicking on any of the sensor name icons exposes
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the Sensor screen. The LPFTP, HPOTP, and HPFI'P Tip Seals screens can each be exposed by

clicking on that component's icon. The data traces displayed are of the control-related variables

of the SSME.

Valve Screen

The valve screen (figure 5) shows the same components as the SSME screen but the valves are

enlarged and animated. The valves rotate in simulation time to show the percentage each is

open. The plotted data also show the normalized valve position. All mouse-selectable items are

the same as in the SSME screen (figure 4). Valve faults are recognized by the model-based fault

detection system.

LPFTP Screen

The Low Pressure Fuel Turbopump screen (figure 6) shows a cross section of the turbopump.

A failure is signaled on this screen when hydrogen gas leakage from the turbine to the pump is

detected. This leakage causes a reduction in efficiency of the turbine. The rule-based fault

detection scheme identifies this leakage using the variables displayed in the plotting window.

Sensor Screen

The Sensor screen (figure 7) depicts the sensor failure detection, isolation, and accommodation

(FDIA) system. The FDIA system consists of nine sensors measuring variables on the fuel side

of the engine. These nine variables are dependent upon each other, i.e. their values are

interrelated such that any incorrect measurement can be detected given the other measurements

and any missing measurement can be estimated given the others. In the ICS testbed, a neural

network is used for this failure detection and data recovery. The upper left window on the sensor

screen shows the fuel side of the engine with the sensor lines nmning into the input layer of the

neural network. When a sensor failure flag is received from the CIM Unit, the sensor line turns

red and is switched out and the previous output of the neural network corresponding to that

sensor is switched in. Thus the GUI shows symbolically how the measurement is replaced by

the estimate. Meanwhile, the plotting window displays the sensed value in black and the

estimated value in red on the same graph.

HPFTP Tip Seal Screen

The High Pressure Fuel Turbopump tip seal screen (figure 8) shows the spinning turbine and a

representation of the gap between the blade tips and the outer edge of the passage, which is an

indicator of turbine efficiency. As the gap increases, more hot gas can leak through, bypassing

the turbine blades thereby decreasing the useful energy. This is detected by the rule-based fault

detection system using the efficiency-related variables plotted on the screen. The illusion of

spinning is created by sprites moving along the turbine blades. In addition to displaying tip

clearance, this screen contains the rotor blade icon used to expose the following screen.

HPFrP (Blade) Screen

The High Pressure Fuel Turbopump screen (figure 9) shows a first stage rotor blade, a detail of

a section of the previous screen. The screen is used to give an indication of estimated remaining

blade life. Exposure to repeated stress-strain cycling will cause fatigue cracks which will
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eventually result in the blade severing [13]. The screen symbolizes this phenomenon by

showing a crack propagating along the blade root until the instant of failure when the blade

disappears leaving behind a jagged stump. The life estimation is perfomaed by two neural

networks in combination with numeric computations as shown symbolically in the figure, using

the variables in the plotting window. It is not currently incorporated in the ICS test bed.

HPOTP Screen

The High Pressure Oxidizer Turbopump screen (figure 10) shows the cross section of the pump.

This is an intermediate screen displaying HPOTP operating-condition variables and containing

an icon which indicates the position of the seals in the following screen. No failures are

associated uniquely with this screen.

HPOTP Seals Screen

The High Pressure Oxidizer Turbopurnp seals screen (figure 11) shows a close-up of the seal

system. It is a detail of a section of the previous screen. A seal failure here could be disastrous

as fuel-rich hot gas may come in contact with liquid oxygen resulting in an explosion. A failure

is signaled as soon as the rule-based fault detection scheme, using the displayed variables, detects

a broken seal.

OPERATIONAL MODES

The GUI is capable of operating in networked or stand-alone mode. The system was designed

and is intended to run networked as part of the ICS testbed. However, during the development,

testing and debugging phases, it is critical that the GUI have the ability to run on its own,

duplicating its networked behavior. The user chooses the mode at start-up by calling the GUI

routine with a logical argument indicating whether or not the system is networked. If the GUI

is networked, the data values are read directly from the input buffer, ff not, they are set within

the program to some predetermined values. The two different data acquisition functions are the

only code which is not common to both modes. The stand-alone mode allows a user to check

every aspect of the GUI except for the reading of the input buffer. This way, all changes can

be tested and evaluated without tying up the rest of the testbed system.

An automatic reset option was built in to avoid having to stop and restart the GUI and CIM Unit
each time the control is reset to nominal conditions before a new simulation run. To prepare for

the reinitialization of the simulation, a button on the CIM Unit is pressed, causing the time stamp

value sent over the network to the TI Explorer to be reset to 0.0 and remain at that value as long

as the button is depressed. When a time stamp value of 0.0 is first received by the GO-I, the

screens axe all reset and all flags and internal variables reinitialized. The GUI loops, reading the

buffer, mouse and keyboard input as usual but does not plot in the plotting window nor save past

data values until the first nonzero time stamp is received. Thus, only the data which are

considered valid are plotted. This feature is also implemented in the stand-alone mode since the

two modes are identical except for the data acquisition portion. When running stand-alone, the

user can set a logical flag from any output window which will set and hold the time-stamp value

at 0.0 and, likewise, the user can reset the logical flag to restart the progression of time. A block

diagram of this automatic reset procedure is shown in figure 12. Note that as long as the time-
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stamp is 0.0, the previous data values are overwritten with the new set of variable values as the

program loops. This way, once time starts advancing, the values plotted corresponding to a time-

stamp of 0.0 are the ones received most recently.

SPEED

The SSME simulation is slowed down to about 10% of real time in order to accommodate some

of the slower ICS hardware and software, most notably G2 TM. The CIM Unit sends data over

the ethemet to the GUI at a rate of 20 packets per second which is sufficient to display the

transient plots of the slowed down simulation. With this transfer rate, the curves which appear

in the plotting window are displayed for nine seconds (180 points divided by 20 points per

second equals 9 seconds) between each leftward shift. As the simulation is sped up to approach

real time, a trade-off develops between the need to plot sufficient data points to show the

response in detail, and the need to keep the display on the screen long enough to see it properly.

Another consideration is that ff the data transfer rate becomes too high, the Explorer might not

be able to read all of the data packets and lose some when the input buffer overflows. This is

especially likely to happen when a new screen is selected using the mouse since there is a lot of

software overhead associated with exposing a different frame. Exposing a new screen might take

a second or two during which time the CIM Unit continues to send data. Because of the Linear

interpolation feature of the plotting window, even if some data are lost, the remaining points are

connected by straight lines which masks the fact that some are missing. During transients,

however, this has the potential to be misleading because the sampling process filters out some

high frequency information. Therefore, it is important to select a data transfer rate to the GUI

which allows the important frequencies to be displayed and balance this against the ability of the

Explorer to receive data packets without its buffer overflowing. If the data transfer frequency

is low enough that the plot can be read easily, the transfer rate should be well within the range

the Explorer can accept without a problem.

ADDING SCREENS

The GUI is modular. There are pieces of code corresponding to the creation of each frame.

Copying the code and making minor changes such as to the names of the windows is all that is

required to allow the construction of a screen. In order to be able to expose the screen, it is

necessary to put an icon in the mouse-sensitive graphics window of an existing screen which,

when clicked on, will bring up the new frame. Once the window is created, a picture containing

mouse-sensitive icons can be drawn in the upper window, and axes can be inserted in the lower

right window.

Using the existing code as a guide, it is straightforward to create additional screens. Thus the

GUI can be extended as needed without a great deal of effort. However, creating the detail

required for the picture in the mouse-sensitive graphics window might require a tremendous

amount of work. It can take hundreds of graphical primitives to build up a figure such as that

in the SSME screen (figure 4) and this does not even take into account the complexities involved

with customizing the animation which might be desired as in the valve or sensor screens (figure

5 and 7, respectively).



CONCLUSIONS
A GUI has been developed and applied to the intelligent control system test bed of a reusable

rocket engine. The GUI runs well in the testbed system. It is fast enough to meet the

requirements of this demonstration which rims at 1/10th real-time. Each failure which the ICS

is able to identify is displayed clearly on at least one screen. Additional screens can be added

with little effort as they become necessary. Moving through the GUI is logical and

straightforward because each graphical display is uncluttered yet detailed enough to show

important information in an easy-to-understand format.

BIT NUMBER

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

APPENDIX: FAILURES

FAILURE

LPFTP Failure

HPFTP Tip Seals Failure
I-IPFTP Blade Failure

HPOTP Failure

FPOV Failure

MFV Failure

CCV Failure

MOV Failure

OPFV Failure

OPOV Failure

T5 Sensor Failure

P5 Sensor Failure

Pc Sensor Failure

Pft2d Sensor Failure

Sf2 Sensor Failure

Tfd I Sensor Failure

Pfdl Sensor Failure

Qfdl Sensor Failure

Sn Sensor Failure
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